Music Generation Using Autoencoders and
Transformer Mixture Distribution Models

Kevin Chen
Division of Engineering Science
University of Toronto
Toronto, Canada
kevinkaiwen.chen @mail.utoronto.ca

Abstract—Despite recent progress in generative Al, challenges
persist in creating musically coherent compositions. Building
upon established techniques such as variational autoencoders
(VAEs) and transformer mixture density models (MDN), we intro-
duce a reduced-scale approach to unconditional music generation.

The proposed model is a modification of the MusicVAE-
TransformerMDN model utilized by Mittal et al. Similarly, our
model utilizes transformers that operate on latent embedding to
capture melodic patterns and dependencies. Our implementation
differs on several fronts, namely utilizing sliding window to pair
context and target embedding during data processing, along with
general network architecture changes. In addition, we switch
between two datasets mid-way through training for the purpose
of fine tuning. The model is first trained on a large dataset of
with varying genre and style, then switches to a more specific
dataset with classical piano music. Notably, the results show that
such a method is effective in retaining model efficacy despite a
90% reduction in dataset size and a shallower network, although
it comes at the cost of a smaller variety of styles it can emulate.

Quantitative evaluation metrics such as Fréchet Distance and
Mean Value Discrepancy demonstrate the retained efficacy in
comparison to a prior baseline and the ground truth. Fur-
thermore, subjective analysis by humans of varying familiarity
with music theory indicates the model is effective at learning
tonality. However, all models, including the baseline and the
model presented by Mittal et al produce poor evidence of rhythm
and cadence. The model produced mixed results for long-term
rhythm and song structure. As such, limitations of the task and
possible solutions to this issue are also discussed.

Index Terms—Automatic Music Generation, Transformer Mix-
ture Density Model, Variational Autoencoder, MIDI

I. INTRODUCTION
A. Overview

Generative Al has recently been applied, with great success,
to art and text. Generative models and architectures, powered
by diffusion and transformers, are very popular and are now
being deployed and available to the general public. They are
convenient because they offer significant cost and time savings.
Both being more creative domains, music generation is a
natural next step. However, music has its unique challenges.

Music is an ultra-high dimensional input and target. There
are too many different aspects of music; pitch and rhythm
objectively, but also how these musical features combine to
create new ones such as playing style, harmony, and musical
meter. Music composition is an artistic discipline that requires

Yina Gao
Division of Engineering Science
University of Toronto
Toronto, Canada
yina.gao @mail.utoronto.ca

David Guo
Division of Engineering Science
University of Toronto
Toronto, Canada
davidmy.guo @mail.utoronto.ca

both creativity and sufficient understanding of theory to make
it pleasant sounding. We hope to create a model that can
emulate this understanding, and implicitly learn the guidelines
that make music enjoyable to listen to.

Several different techniques have been experimented with,
with various degrees of success. Many of these strategies have
taken inspiration from image and text generation, such as using
diffusion, transformers, and embeddings.

We demonstrate that the challenges of music generation can
be overcome by using a variational autoencoder and principal
component analysis to reduce the dimensionality of music and
also computationally derive and extract the important qualities
of a given sample of music. This autoencoder is meant to
capture the essential qualities of a musical sample without
extensive hand-engineering of features.

We combine this with a well-studied transformer mixture
density model [1] [2]]. By using self-attention, the model
is able to effectively incorporate the time-series nature of
music. Originally devised for language problems, we show
that transformers can work well for music generation. [T}

B. Literature Review and Previous Work

Much work relating to music generation has been done, and
many use common elements. We focus on models that use
Diffusion, transformers, and also models that embed music
for preprocessing.

Various strategies for embedding music have been formu-
lated, but a useful one is MusicVAE [3]]. This is an encoder-
decoder architecture with LSTMs.

Mittal et al. formulate a neural network architecture using
diffusion. [2f] Taking MIDI files, the model embeds them using
MusicVAE and then uses a diffusion model for unconditional
generation. This is essentially generating music from scratch.

Majidi et al. [4]] pursue another approach. They rely on
genetic algorithms for generation, and Bi-LSTMs combined
with music grammar as the objective function. Genetic Al-
gorithm One (GA1) generates music pieces and evaluates
them based on similarity to existing music and rhythm or
harmony violations. The Bi-LSTMs are trained using regular
and expert listeners to score input music. Genetic Algorithm

ISee our GitHub Repo at https://github.com/davidguo123456/ECE324

Two (GA2) is a modification of GA1 which adds the human-
trained Bi-LSTMs to its objective function. Generally, the
largest contribution of this paper is their use of neural networks
in the objective function to capture listener satisfaction as well
as musical grammar.

Lam et al. combine music generation with text input to
give more versatility anc customizability to the generation
process, using Language Models (LM) to guide the process
[5]. A problem with music generation is the difficulty behind
creating coherence across the generated sequence. The VAE-
GAN uses Dual-Path Diffusion (DPD) to solve this. The first
path is a “long-context generation” path that predicts a multi-
chunk target on larger blocks of generated music. The other
path is a fine path to focus on the smaller details of the music.

JEN-1, proposed by Li et al. [6] is another model using
Omnidirectional Diffusion Models. It utilizes both autore-
gressive and non-autoregressive diffusion modes and latent
embeddings. The diffusion network itself is modified from
Efficient U-Net.

Another relevant aspect of training these models is being
able to recognize melodies. Zhao et al. [7] propose a modified
definition for main melody, defining it as ”...a set of similar
but non-identical melodies that can be utilized to identify
the music by entities...” along with a novel model to extract
multiple main melodies from a song. Input data is represented
with Compound Word, (with five tokens to describe notes),
and a sliding window to identify chord likelihood.

In their paper, Tang et al. review notable deep learning
focused approaches to music generation in recent years, and
highlight their proposed model, RM-Transformer. [8] RM-
Transformer can be described as a two part model that uses
an encoder, decoder, and an attention metric.

The authors Peebles and Xie [9]] propose a new class of
diffusion models that utilize transformers as their backbone,
coined Diffusion Transformers (DiTs). For DiTs, Peebles and
Xie made promising observations when training architectures
using a forward pass inspired by Vision Transformer architec-
ture and pre-trained autoencoders from Stable Diffusion. The
contribution is showcasing their scalability and the possibility
of using transformers as substitute backbone for existing
diffusion models.

C. Problem Statement

Composing music often requires extensive knowledge in
music theory and practice. These considerations make com-
posing a melody a difficult and time consuming task for
musicians and the general population alike. Given the success
of VAEs and transformers in generation tasks, our problem
statement is to use these architectures to unconditionally
generate independent melody lines that can emulate real music.

D. Dataset

We used two datasets. The first is a subset of the Lakh MIDI
dataset [10]. This is a standard dataset used for training audio
samples. Second, we used a classical piano music dataset [|11]].

MIDI is a file format that encapsulates pitch, duration, and
instrumentation of music, making it highly versatile.

II. MODEL AND TRAINING SPECIFICATIONS
A. Data Processsing and Model Architecture

The MIDI files are first fed into MusicVAE to generate
lower dimensional embeddings of the music. This is necessary
to reduce training time as MIDI files are extremely high-
dimensional, encoding information about pitch, duration of
notes, different instruments, and tempos (speeds), all changing
throughout time [3].

The VAE has an encoder-decoder architecture where the
encoder is a bi-direction LSTM and the decoder is an autore-
gressive LSTM. See the architecture in figure |1} [2]

For every input song, MusicVAE encodes each 2 bar seg-
ment into a 512-dimension embedding. A sliding window of
size 16 is then utilized to pair contexts with targets. Compared
to Mittal et al, this is a reduction in context size (down from
32 to 16), but enables more of the input data to be used in
training while also reducing the impact of padding [2].

Next, PCA is performed on the output of MusicVAE to
transform the 16x512 data to 16x42 dimensional embeddings,
which are fed into the next half of the model.

Then, a 128-dimensional sinusoidal positional encoding is
added to the input samples according to (I) from Mittal. [2].

h h

107063, 107 % 63j e/ = [sin(w), cos(w)]
(D
The generative part of the model’s architecture is an autore-
gressive transformer. This transformer encoder has 5 layers,
with 8 self-attention heads. Each layer has 2 shortcuts. See
figure [2}
The output from the transformer is fed into 2 fully-
connected layers, each with 2048 neurons. The output of this
model is a mixture of 100 Gaussians, to capture a wide range

of distributions.

w =

B. Training

Training was conducted for 16 hours in WSL2 on a system
with a Ryzen 7 5800X3D CPU and RTX 3070 Ti GPU, both
less powerful than that used by Mittal et al. Using WSL2 also
added additional compute overhead.

20 Epochs of training were done on the Lakh MIDI dataset.
25 more were done on the classical dataset, with a reduced
learning rate for the last 5 epochs for better fine-tuning.

This is an application of finetuning. We think that starting
training on the larger dataset allows the model to first learning
general musical relationships. Then, applying it on the clas-
sical dataset fine-tunes the model to generate for a specific
genre and produce more consistent results.

We found that the classical dataset, being smaller, also was
faster to train, allowing us to use our limited compute better.

III. RESULTS

Unlike simpler tasks like classification, there are no standard
evaluation metrics for music generation. We will quantitatively
evaluate the generated samples with framewise average musi-
cal statistics, Fréchet Distance, and Mean Value Discrepancy.

Fig. 1: MusicVAE architecture based on Mittal paper [2]

T

Input
1
1

Encoder

Latant
Code

Output

Fig. 2: Model Architecture for Transformer Mixture Density Model [2]

Fully 128 gelu 128 Fully

activation Connected

128 Self-
o Attention

128
‘ ST Connected

X2

—

Fully
4—{ o H Cornectod I_'

|

swish Fully N swish Fully Fully
activation Connected activation Connected Connected

Residual Dense Layer

Our baseline model is the generation of a random embedding
from a standard Gaussian distribution, which then follows the
same process to get decoded into music using MusicVAE.

Since musicality is subjective and hard to quantify, we also
present subjective results and record noteworthy observations
from the human evaluation of qualities like evidence of
music theory understanding, musicality, and pleasantness of
the generated samples.

Ten music samples were unconditionally generated using
our trained autoregressive Transformer model. These were
compared with random samples that were generated by draw-
ing a random vector from a standard normal of the size of the
embedding and passing that to MusicVAE.

A. Human Evaluation

The model-generated samples were given to humans for
their evaluation.

e Track 2: This one seems random. The track has no
cohesion.
o Track 4:
- 0:09 - 0:47
— Mostly in minor key, alternating between A minor
and C major

o Track 5:

- 0:33 - 1:00

— Rarely out of key, has cadence
e Track 6:

— Octaves at the beginning, showing knowledge of
structure
— At 0:16, in-key triad
o Track 8:
— D# diminished triad, using D#, F#, A#
— Doesn’t sustain though
e Track 9:

— Overall weird mixture, but has some of the best short
sections because of good use of tonality

o Track 10:

— C# melodic minor

— 0:02 - 0:40 is mostly melodic, however poor rhythm

— Elements of a key theme or ostinato, no answer to
the melody

Overall comments for all tracks: while the model is good
at keeping the tonality, the samples consistently lack evidence
of rhythm, and the specific combination of notes seems like it
is randomly walking the scale instead of having a meaningful
structure.

B. Average Note Statistics for Sliding Windows

Average framewise note statistics are calculated by consid-
ering notes within a frame 4 measures long. Then, the frame
is moved measure by measure across the sample. The series of
statistics is recorded and plotted for the generated, random, and
testing data and averaged across the 10 samples. The purpose
of using framewise statistics is to evaluate the model’s ability
to produce music that demonstrates long term patterns, which
relates to the strength of melodic and rhythmic similarity as
proposed by [2]]. For the following metrics, smaller deviations
in the statistics suggests melodic and/or rhythmic consistency
and stability in the samples, which is desired. See the appendix
for all figures in this section.

In figure [5] we compared the pitch range (difference be-
tween the highest lowest notes) of a sliding window of notes
for a generated sample, real sample, and random sample.
Observing the smoothness of the graphs shows the framewise
pitch range is the most consistent in the testing data, second
most consistent in the generated data, and least consistent in
the random samples. A similar conclusion can be drawn for
mean pitch in figure [3| and pitch variance in figure [6] These
results show that the model outperforms the random baseline
in learning the melodic patterns of real music.

For the rhythmic metrics, mean note duration and note du-
ration variance, shown in figures] and [7] respectively, there is
no obvious order of which samples between real music, model
output, and random data are the most rhythmically consistent.
A possible explanation of these results is since the testing
data doesn’t show strong rhythmic stability compared to even
the random baseline, the embedding method using MusicVAE
may perform poorly at extracting rhythmic information.

C. Fréchet Distance and Mean Value Discrepancy

The Fréchet Distance (FD) is a measure of the maximum
distance between two vector trajectories at any point in time.

The Mean Value Discrepancy (MVD) is the difference be-
tween the mean values of distributions generated between two
models. Both are common metrics for generative models. We
compared the final trained model (trained with 45 epochs) to
the random baseline. For both metrics, a lower distance can
be interpreted as more similarity between the sample and a
training distribution.

TABLE I: Fréchet Distance and Mean Value Discrepancy
for Generated Music and Random Music, comparing with a
Training Example

[[[Generated | Random |

Fréchet 1.77 11.55
MVD 0.15 0.20

As seen from table [} the lower distances for the Generated
sample indicate the generated sample is more similar to the
training distributions than the random sample. Let it be noted
that these metrics merely evaluate latent similarity, which
does not necessarily imply melodic or rhythmic consistency
or musicality on its own.

D. Limitations and Potential Solutions

Future work could compare our architecture to diffusion
models or GANs. These models have shown promise, espe-
cially with image generation. GANs in particular hep address
issues with evaluation since they can be trained to imitate
human listeners. Several papers previously mentioned [2] [5]
[9]] using diffusion.

Another area of improvement is the evaluation metrics.
More work needs to be done in the subject of evaluating
the quality of musical samples. Human evaluation is slow
and does not scale, while it is difficult quantify musical
”goodness”. Importantly, work is still required to concretely
correlate quantitative metrics with subjective ones.

A major critique of the generated samples is the model’s
poor understanding of rhythm. Several remedies for this have
been proposed; for example, Li and Sung [12]] propose sep-
arating the embedding and processing of rhythm and pitch.
Other solutions include increase embedding context size even
more, similar to [2].

Additionally, a modified melody extraction scheme during
data processing could better separate the different parts repre-
sented by different instruments or parts and allow multi-track
generation.

IV. CONCLUSION

We have shown that our data processing pipeline, with an
autoencoder and transformer mixture model, produces music
that is better than the baseline of random. This has been
done through quantitative metrics, and indicates the model has
learned aspects of music, notably tonality, mean note duration
and pitch variance well.

We encountered severe limitations related to the availability
of compute. This forced us to reduce the size of our model
and length of training compared to state-of-the-art models.

Despite this, training was effective on a significantly truncated
dataset and reduced model size. Furthermore, the adjusted
training scheme proved effective in mitigating weaker compute
capability and ensuring timely training. While more compute
ability will likely enhance the result, the proposed measures
lower the difficulty of training significantly.

Limitations and possible solutions have also been proposed,
notably regarding rhythm and cadence, which remain to be
implemented. Since the model was effective at being tonally
coherent, addressing rhythm is a top priority.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

REFERENCES

C. M. Bishop, “Mixture density networks,” 1994.

G. Mittal, J. Engel, C. Hawthorne, and I. Simon, “Symbolic music
generation with diffusion models,” 2021.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, “A hier-
archical latent vector model for learning long-term structure in music,”
2019.

R. M. T. M. Majidi, “A combination of multi-objective genetic algorithm
and deep learning for music harmony generation,” Multimedia tools and
applications, vol. 82, pp. 2419-2435, 01 2023.

M. W. Y. Lam, Q. Tian, T. Li, Z. Yin, S. Feng, M. Tu, Y. Ji, R. Xia,
M. Ma, X. Song, J. Chen, Y. Wang, and Y. Wang, “Efficient neural
music generation,” 2023.

P. Li, B. Chen, Y. Yao, Y. Wang, A. Wang, and A. Wang, “Jen-1:
Text-guided universal music generation with omnidirectional diffusion
models,” 2023.

K. A. V. M. B. K. W. Jing Zhao, David Taniar, “Multi-mmlg: a novel
framework of extracting multiple main melodies from midi files,” pp.
22 687-22704, 08 2023.

J. Tang, L. Yin, and J. Yu, “Generation of western piano music based
on deep learning,” in 2022 International Symposium on Advances in
Informatics, Electronics and Education (ISAIEE), 2022, pp. 524-527.
W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in
2023 IEEE/CVF International Conference on Computer Vision (ICCV),
2023, pp. 4172-4182.

C. Raffel, “Learning-based methods for comparing sequences, with ap-
plications to audio-to-midi alignment and matching,” Ph.D. dissertation,
Columbia University, 2016.

“Classical archives: Midi,” 2024.

S. Li and Y. Sung, “Mrbert: Pre-training of melody and rhythm
for automatic music generation,” Mathematics, vol. 11, no. 4, 2023.
[Online]. Available: https://www.mdpi.com/2227-7390/11/4/798

https://www.mdpi.com/2227-7390/11/4/798

Mean Pitch

Mean Note Duration

Pitch Range

APPENDIX

Fig. 3: Mean Pitch for each Sliding Window Aggregated over 10 Examples

Average Across Generated Samples I Average Across Real Samples I Average Across Random Samples
70 4 70 4 70 4
60 5 601 5 601
[[
= =
3 3
50 = 50 = 50
40 40 40 -
30 - 30 - 30 -
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Frame Number Frame Number Frame Number
Fig. 4: Mean Note Duration for each Sliding Window Aggregated over 10 Examples
Average Across Generated Samples Average Across Real Samples Average Across Random Samples
0.7 1 0.7 1 0.7 1
0.6 1 0.6 1 0.6 1
5 s
0.5 4 2 051 S 054
e ®
2 5
0.4 4 S 0.4 & 044
L 2
[=} [=}
0.3 Z 03+ Z 03
] @
a]
0.2 1 = 024 Z 024
0.1 0.1 0.1
0.0 - 0.0 - 0.0 -
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Frame Number Frame Number Frame Number
Fig. 5: Pitch Range for each Sliding Window Aggregated over 10 Examples
Average Across Generated Samples Average Across Real Samples Average Across Random Samples
35 35
30 4 30 4 30 4
254 254 254
o o
201 2 20+ 2 20
]]
o o
= =
15 S 15 S 15
& &
10 A 10 A 10 A
5 5 5
0- 0- 0-
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Frame Number Frame Number Frame Number

Pitch Variation

Variance of Note Duration

Fig. 6: Variance of Pitch for each Sliding Window Aggregated over 10 Examples

Average Across Generated Samples

Average Across Real Samples

Average Across Random Samples

200 4 200 4 200 4
s s
150 £ 1501 £ 1501
= =
= =
g g
100 5 100 5 100
& &
50 50 50
o0 o0 o0
0 5 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25
Frame Number Frame Number Frame Number
Fig. 7: Mean Variance of Note Duration for each Sliding Window Aggregated over 10 Examples
Average Across Generated Samples Average Across Real Samples Average Across Random Samples
0.14
0.8 - 0144
074 0.12 A _
< 5 0121
0.6 - = 0104 B
© ®
5 £ 0104
a a
0.5 u 0.08 2
® S 0.08
=
0.4 4 = z
S 0.06 5
© o 0.06
0.3 o g
£ 0.04 4 8
c T 0.04
4 o
02 g £
0.1 4 0.02 4 0.02 4
0.0+ 0.00 - 0.00 -
0 5 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25

Frame Number

Frame Number

Frame Number

	Introduction
	Overview
	Literature Review and Previous Work
	Problem Statement
	Dataset

	Model and Training Specifications
	Data Processsing and Model Architecture
	Training

	Results
	Human Evaluation
	Average Note Statistics for Sliding Windows
	Fréchet Distance and Mean Value Discrepancy
	Limitations and Potential Solutions

	Conclusion
	References
	Appendix

