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Abstract—Pancreatic cancer is a highly lethal malignancy,
with survival rates heavily dependent on timely and accurate
diagnosis. Subtype classification and tumor segmentation from
medical images are critical for guiding treatment strategies. In
this work, we present a multi-task model based on the nnU-Net
V2 framework, designed to perform simultaneous segmentation
of pancreatic tumors and classification of their subtypes. The
model employs a shared residual encoder and dual decoder
architecture, with a custom classifier head for subtype prediction.

We evaluated the model on a de-identified pancreatic com-
puted tomography (CT) dataset using a 5-fold cross-validation
approach. The classifier achieved an accuracy of 91.67%, with
average sensitivity and specificity of 90.4% and 91.4%, respec-
tively, demonstrating performance comparable to human experts.
The segmentation head attained a Dice score of 45.36 and an
Intersection over Union (IoU) of 35.20%, indicating challenges
in segmenting complex tumor regions.

Index Terms—Pancreatic cancer, Medical image segmentation,
nnU-Net, encoder-decoder, Multi-task learning

I. INTRODUCTION

Pancreatic cancer is one of the deadliest malignancies, with
limited survival rates due to late diagnosis and complex treat-
ment pathways. Moreover, with an increasing incidence rate,
it is predicted to become the second leading cause of cancer-
related death in several regions, including the United States
and Europe [1]]. Accurate identification and classification of
pancreatic lesions and their subtypes in CT scans are critical
for improving diagnostic accuracy and treatment planning.
Prognosis and treatment for differing subtypes varies greatly,
from a median survival of 13.3 months for Squamous PDAC
types up to 30 months for ADEX [2f]. Moreover, the majority
of PDAC patients are not eligible for surgical tumor sampling,
further emphasizing the need for non-invasive subtype diag-
nosis. Deep learning approaches, particularly convolutional
neural networks (CNNs), have demonstrated significant suc-
cess in medical imaging tasks, including segmentation and
classification [3]].

The nnU-Net framework [4]] has emerged as a state-of-
the-art platform for medical image segmentation, offering
automated pipelines that adapt to diverse datasets and tasks.
In this work, we extend the capabilities of nnU-Net V2 to
tackle a multi-task problem: simultaneous segmentation of
pancreatic tumors and classification of their subtypes. Lever-
aging a shared encoder and dual decoders, our model aims

to streamline the workflow by combining these tasks within a
single architecture.

We present a thorough investigation of our model, includ-
ing architectural modifications to incorporate a classification
head, loss functions, and training strategies. Our approach is
evaluated using a de-identified pancreatic CT dataset, with
performance metrics assessed through 5-fold cross-validation
and ensemble predictions. Additionally, we perform ablation
studies to analyze the contributions of various architectural
components to classification performance.

II. DATASET

The data set is non-public and consisted of de-identified
pancreatic CT scans, labeled with background, pancreas, le-
sion regions, and an overall lesion subtype. Due to training
logistics and available computing resources, the dataset was
pre-cropped to smaller regions of interest.

TABLE I: Dataset Split

Split Subtype 0 | Subtype 1 | Subtype 2
Train 62 106 84
Validation 9 15 12

The dataset comprises 252 training images, and 36 vali-
dation images. Since we used nnU-Net V2’s 5-fold cross-
validation, the validation set is use to evaluate the performance
of our final model. Thus, nnU-Net V2 splits the training set
during planning. No preprocessing was performed except for
the preprocessing undertaken by nnU-Net V2 by default.

III. METHODS
A. nnU-Net V2 Residual Encoder

nnU-Net V2 is a state-of-the-art deep learning framework
designed for medical image segmentation. It provides auto-
mated pipelines for preprocessing, network configuration, and
training. Building on the strengths of its predecessor, nnU-
Net V2 incorporates a modular architecture, enhanced support
for multi-task learning, and improved scalability, making it a
robust choice for diverse medical datasets.

The proposed model utilized nnU-Net V2’s Residual En-
coder UNet architecture, specifically the nnU-Net ResEnc M
preset in the 2D configuration. The 2D configuration was cho-
sen mostly due to training logistics, with the 3D configuration



empirically being much slower to train. The architecture was
then modified to add a classifier head in parallel to the existing
UNetDecoder.

By default, ResEnc M uses dice and binary cross en-
tropy loss with logits via an nnU-Net V2 function called
DC_and_BCE loss.

B. Classifier Head

The classification head is implemented as a sequential
feed-forward neural network, designed to predict target class
labels from encoded feature representations. The architecture
begins with a convolutional feature extractor (CFE), using 2
layers of convolutions with kernel size of 2, and stride of
1. Both layers use ReLU activation and batch normalization.
The output of the CFE is flattened and passed through 4
fully connected (dense) layers with batch normalization, ReLU
activation, and a dropout probability of 0.3 except for the
last layer which has a dropout of 0.2. Finally, the the 5th
fully connected layer maps the feature representation to the
number of target classes (3 in this case). A batch normalization
layer is applied after this output, but no activation function
is introduced at the output of the classifier head to align
with the DC_and_BCE_loss function used for training (see
the Discussion Section for details).

A detailed model architecture diagram with accompanying
legend is presented in Figure [T}

For training, the proposed model uses a weighted sum
of losses between both heads, with a weight of 1 for the
segmentation head, and a weight of 3 for the classifier head.
Due to the use of the 2D configuration, the proposed model
outputs a single subtype prediction per slice of the CT scan.
Since tumors are 3D, we ensemble these slice predictions to
obtain the prediction for the full tumor.

IV. TRAINING

Training was conducted with a modified nnUNetTrainer
object to facilitate multi-task learning. Weighted sum of losses
was used to train both segmentation and classifier heads.
A weight of 3 was given to the classifier loss, due the
segmentation head’s tendency to dominate, especially early
in the training. Other changes comprise primarily of classifier
evaluators and metrics, and loggers. Training used the default
stochastic gradient descent optimizer with a learning rate of
le-2, and weight decay of 3e-5. Learning rate decay also used
the default polynomial scheduler. Batch size was reduced to
16 due to VRAM limitations.

nnU-Net, by default, uses a 5-fold cross-validation scheme,
using 5 unique splits of the same training data. To predict,
these folds are independently trained and their outputs ensem-
bled. An 80/20 split was used to produce each fold, yielding 5
splits of 201/202 training images and 51/50 validation images.

Training was conducted over 100 epochs as losses con-
verged far ahead of the default of 1000 epochs. Each fold
was independently trained on it’s split. 5-fold loss graphs are
included in figure 3]
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Fig. 1: Multi-task model architecture

V. RESULTS

Metrics were chosen as per Metrics Reloaded [5]].

A. Classification

After the 5-fold ensembling, the proposed model’s classifier
head achieved an accuracy of 91.67%, an Fj3 of 0.9105,
average precision of 92.58%, and a brier score of 0.0611.
Sensitivity and specificity per class were also evaluated.

The result is promising and yields average sensitivity and
specificity of 90.4% and 91.4% respectively. Comparing to
the results of [3], which had more lesion subtypes in their
classification, the sensitivity is similar, although with a lower



TABLE II: Per class sensitivity and specificity

Subtype 0 | Subtype 1 | Subtype 2
Sensitivity 77.8% 93.3% 100.0%
Specificity 96.3% 90.5% 87.5%

specificity by "6% between the models. This indicates per-
formance comparable to human professionals, over the lesion
types present in the dataset. The confusion matrix is also
presented in figure il Of note is that the classifier tends to be
most confident with subtype 2, with the highest false positive
rate in subtype 1.

B. Segmentation

The segmentation head achieved a Dice of 45.36, and an IoU
of 35.20%. The segmentation result is quite poor. In particular,
the IoU score indicates the segmentation failed to properly
label large portions of the ground truth. Part of this result may
be due to the added strain from training a classifier at the same
time or small dataset size. Additionally, architecture choices
could have had a large impact, particularly the choice to use
the 2D instead of 3D configuration for nnU-Net. An example
of some segmentation results are shown in figure 2] Note
that in both results, the segmentation result tended to predict
floating regions outside the pancreas, along with feathering
between slices. Both of these artifacts are likely related to
using the 2D configuration, since each slice’s segmentation
prediction is not informed by the 3 dimensional structure
vertically above and below it.

C. Ablation study

An ablation study was conducted on the classifier head,
results indicate that the CFE makes a sizable contribution to
the network, however, even a single dense layer provides a
respectable 84.3% accuracy. Along the same trend, the rest
of the results also show only mildly poorer results across all
metrics. Removing batch normalization and dropout (which
were investigated due to overfitting) both also give a mild
performance decrease. Network depth did not make a major
difference. These results indicate that model complexity is not
the limiting factor in raising metric scores, and the problem
likely lies with other aspects of the model, such as the encoder,
or the training regimen, in particular, balancing segmentation
and classification could be improved. Due to time constraints,
ablation could not be run on the full 5-fold ensemble, and
results for a single fold are shown. Of note is that ensembling
made the largest difference to Dice, up to an increase of
15, but accuracy only increased a few percent (88.2% —
91.7%). All model variations (except ’No Batchnorm’ and’No
Dropout’) are presented as progressive removals from the
proposed architecture.

D. Discussion

We chose to use DC_and_BCE_loss since empirically,
it provided better balancing between our segmentation and
classifier heads, which lead to better dice loss by "3 and

(a) Dice: 83.91

(b) Dice: 10.95

Fig. 2: Strong vs weak segmentation results.
Note: predicted segmentation is in orange

TABLE III: Ablation Study

Model Variation | Accuracy | Brier Score | Dice
Proposed Model 88.2% 0.061% 30.9
No Batchnorm 86.2% 0.064% 30.5
No Dropout 84.3% 0.078% 30.2
No CFE 82.3% 0.068% 314

3 dense layers 85.3% 0.056% 30.7
1 dense layer 84.3% 0.083% 29.7

accuracy by about 8% respectively (this, admittedly, needs
more investigation into the base cause, using dice loss on what
is ostensibly a single pixel is not proper).

One of the drawbacks of ensembling per-slice predictions
was the unfairing weighting of slices. Those that did contain
portions of tumor or pancreas contribute to the classification
decision with the same weight as slices that do. Adding
a fourth background class during data processing, so that
slices could be weighed differently during ensembling, was
attempted, but empirically performed worse than the proposed
model. This can likely be attributed to an increase in difficulty
to predict over an additional class.

It should be noted that different models during the ablation
study sometimes performed better or worse than others for
specific classes. This could be taken advantage of by imple-
menting One-vs-Rest (OVR) or One-vs-All (OvA), and training
separate several classifier heads instead of one head outputting



a 3-long softmax output. additionally, as we saw in the ablation
study, classifier architecture is not a limiting factor. To mitigate
this, one possible alternative is to first train the model only for
segmentation, then freeze these weights before training only
the classifier head.

The choice of the 2D configuration instead of 3D also needs
further investigation. During training, the 3D configuration ran
significantly slower, 3-5 minutes per epoch versus 20 seconds
for 2D. This meant that a full 5-fold training at 100 epochs
would have taken over 30 hours when including inference
and evaluation. This would have heavily restricted how many
variations of architecture we could have tested.

VI. CODE RELEASE

Model implementation and reproduction instructions can be
found here:

https://github.com/davidguo123456/pancreas-cancer-
segmentation

VII. CONCLUSION

In this study, we extended the capabilities of nnU-Net V2 to
perform simultaneous segmentation of pancreatic tumors and
classification of their subtypes using a multi-task architecture.
The proposed model integrates a shared encoder with dual
decoder heads for segmentation and classification, enabling
learning from a shared feature space. By leveraging nnU-Net’s
automated pipelines and performing 5-fold cross-validation,
we achieved promising classification performance, with an
accuracy of 91.67% and average sensitivity and specificity
of 90.4% and 91.4%, respectively. These results demonstrate
the potential for deep learning to provide non-invasive and
accurate subtype classifications, comparable to human perfor-
mance.

However, the segmentation head’s performance, with a Dice
score of 45.36 and an IoU of 35.20%, highlights the challenges
of achieving high-quality segmentation in the presence of
small datasets and architectural constraints. The choice of a
2D configuration over 3D, while dictated by computational
limitations, may have contributed to suboptimal segmentation
outcomes.

Our ablation study further highlights the importance of fully
connected layers, batch normalization, and ensembling for
robust classification performance. Attempts to improve predic-
tion weighting during ensembling through the introduction of
a fourth background class showed limited success, suggesting
areas for further exploration.

Future work could focus on addressing these limitations,
including exploring 3D configurations, expanding the dataset,
exploring alternative training regimensm, and refining ensem-
bling techniques to improve segmentation quality. Addition-
ally, evaluating the model on external datasets will further
validate its robustness and ability to generalize.
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APPENDIX

Fig. 3: Loss graphs for all folds
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Fig. 4: Classifier head confusion matrix
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